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J. Phys. A: Math. Gen. 17 (1984) 1403-1413. Printed in Great Britain 

Solutions for Fredholm equations through nonlinear 
iterative processes 

J Guy, B Mangeot and A Sal& 
ERA 498 (CNRS - Imagerie m6dicale ultrasonore), 24, rue du Faubourg Saint Jacques, 
75014 Paris, France 

Received 27 July 1983, in final form 8 December 1983 

Abstract. By adjunction of one or two well chosen functionals taking account simul- 
taneously of the unknown u ( x )  and of the inhomogeneous term f ( x ) ,  every Fredholm 
equation of the second kind can easily be transformed into new nonlinear integral equations, 
for which the solution of the primary equation remains obviously valid. However, when 
usual iterative solving methods are tested, the convergence of the various sequences now 
available are very different and we need criteria to select the best ones. Fredholm equations 
of the first kind can also be solved, using the new processes described which are particularly 
efficient after a preliminary transform pointing out the first iterated operator which is 
necessarily positive. Optimisation techniques are detailed, in order to work out nonlinear 
equations of particular interest, i.e. they are very suitable to perform numerically an 
accurate iterative solution. 

1. Introduction 

It is often easy to set up Fredholm integral equations which are related to various 
physical systems (Lonseth 1977). For instance, in molecular physics, we may usually 
associate a Fredholm equation of the second kind to each perturbation problem (Guy 
er a1 1979b); equations of the first kind, in many cases with a convolution kernel, are 
also important as in medical imaging (Barrett and Swindell 1977, Guy et a1 1979a). 
However, integral operators are rarely utilised in numerous physical areas, as the 
equations involved are frequently judged too difficult to solve. In order to improve 
this situation, we have worked out some new and relatively simple iterative methods 
with a rather good numerical efficiency. 

2. Basic principles for solving equations of the second kind 

where x and y are eventually multidimensional variables, the simultaneous knowledge 
of the kernel K ( x ,  y)  and of the integration domain D defines completely the linear 
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1404 J Guy, B Mangeot and A Salis 

operator K,  the norm of which is explicitly supposed finite. Then, when unity is not 
an eigenvalue of K, equation (2.1) has one and only one solution which can be written 
as 

R being the resolvent operator associated to K (Mathews and Walker 1964, Zabreyko 
et a f  1975). 

As the practical determination of the resolvent kernel R(x, y)  is usually difficult, 
the iterative Liouville-Neumann sequence is often very helpful and consequently used 
to compute u(x). We have the successive approximations (Margenau and Murphy 
1949, Zabreyko et a1 1975) 

3s 

R =  K “ .  (2.4) 
n = l  

However, for any given function f (x) ,  the convergence of the sequence (2:3) will be 
ensured only when the spectral norm of operator K is strictly less than one. With 

the norm of K will be given by 

For llKl12 1, iteration (2.3) will not be successful, except when both the kernel and 
the inhomogeneous term present some remarkable symmetry features (Guy and 
Mangeot 1981). 

3. Nonlinear integral equations related to any Fredholm equation of the second 
kind 

Starting from (2.1), it is not difficult to build up many new and nonlinear related 
equations, such as 

u ( x )  =Q, (u , f ) f (x )+Q2(u , f ) (Ku) (x ) .  (3.1) 

In (3.1), cD1 and Q2 are arbitrary functionals with an important property: they become 
equal to one when u ( x )  is precisely the solution of (2.1). There is a large choice for 
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The reader will easily verify that every formula in (3.2) agrees with @( f + Ku, f )  = 1. 

4. iterative methods with convergence improvements 

Formally, we may try to solve equations (3.1) by using a tentative iteration technique. 
After a choice of the initial guess u o ( x )  (most often, u 0 ( x )  will be either the null 
function or f (  x ) ) ,  the iterative steps are 

U , + l ( X )  = + P " ( K U , ) ( X ) ,  (4.1) 

where coefficients a,  and P n  have the values 

a, = @ l ( U n , f ) ,  P n  = @ 2 ( U n , f ) .  (4.2) 

The change of (3.1) into (4.1) is very similar to the change of (2 .1 )  into (2.3), the 
only striking difference being the loss of the linear properties, due to the introduction 
of both functionals O1 and (P2. An empirical comparison between (4.1) and (2.3) 
shows clearly that the rules of convergence are greatly modified; furthermore, in the 
nonlinear case (4. l), we cannot exhibit a resolvent operator resembling the geometrical 
series (2.4). 

In order to create a class of @-functionals giving as efficient a convergence as 
possible for (4.1), we have to use suitable criteria, i.e. those which are able to induce 
such a property; these main ideas are pointed out in Guy et a1 (1965) and Sal& et al 
(1968). We may decide, for instance, that u,+l(x) has to satisfy the variational condition 

(4.3) 6 /I 4 + 1 -  f - K%+l II = 0 ;  

the analytical form of the functionals Ol  and Q2 are then a logical consequence of 
(4.3) and we thus obtain the values of a,  and P,. 

When P n  is the only parameter to be adjusted (i.e. V n ,  a,  = l ) ,  we have 

II U,+ 1 - f - Kun+ 1 /I = P : II (1 - K )  Kun II - 2P" (Kf, (1 - K )  KU,) + II Kf I1 (4.4) 

P n  = (W, (z-K)Ku"}/II(~-K)K~,l12 (4.5) 

and condition (4.3) gives 

which minimises (4.4). More explicitly, our method here consists of using a standard 
iterative process to solve the nonlinear equation 

U ( X I  = f( x )  + [Wf, (1 - K )  Ku ) / II (1 - K )  Ku ll 21(Ku 1 ( x  1 ; 

(Kf, ( I - K ) K u )  = II(Z-K)Ku(12= llKfII'. 

(4.6) 

if u ( x )  verifies exactly (2.1), ( K u ) ( x )  in (4.6) is necessarily multiplied by unity, as 

(4.7) 
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In the general case, when a, and P,, are both simultaneously deduced from (4.3), 
we obtain 

I1~,+1-f-Ku,+l/1~=A~~yZn+B’,PZn+2D,a,P,-2Fa,-2G,P,+ IIfI12, (4.8) 

with the following simplified symbolism 

A2 = l l ( I  - K)f/I2, 
0, = ((1- K ) f ,  (1- K)Ku, ) ,  

G , = ( f ,  (I-KIKu,,). 

B; = l l ( I -  K)Ku,112, 

F =  ( f ,  (1- K ) f ) ,  (4.9) 

Solving (4.3) gives, for the adjusted parameters of (4.1), 

(4.10) 

When the iterative process (4.1) effectively converges towards the true solution u ( x )  
of (2.1), we find that 

&= IlKf1l2, D,=((I-K)f ,  K f ) ,  G, = (f, Kf), (4.11) 

from which we can deduce a ,  = P, = 1. 

5. Numerical working of the solution for some equations of the second kind 

The interesting cases are essentially those corresponding to ( ( K ( (  > 1, for which we 
could not establish, unfortunately, accurate convergence criteria. For numerous 
examples, we have found empirically that the desired solution is generally obtained 
in fairly good conditions of computation when IlKll is not greater than 3 or 4. As the 
nonlinear equation (3.1) has eventually several solutions (only one of these being a 
common solution for equation (2. l ) ) ,  a stabilisation of (4.1) may occasionally exhibit 
worthless results. However, when such a tendency arises, this fact is immediately 
recognised as at least one of the two coefficients a ,  and ,& will be different from unity. 

In order to show completely how to operate with the new solving techniques which 
we have just advanced for Fredholm equations of the second kind, two relatively 
simple examples are detailed hereafter, with unidimensional variables x and y. 

Example 1. 
Let us solve 

u ( x ) =  1-2  [l + ~ ( X ~ + Y ~ ) ] ” ~ U ( Y )  dy. ld (5.1) 

Here the kernel 

K ( x ,  y )  = K (  y, x )  = -2[1+ 3(x2 + y2)]1’2 (5.2) 

reveals a Hilbert-Schmidt symmetry. Using Kellogg’s method to evaluate the spectral 
norm (Krasnov et a1 1977), we find 

llKll= 3.461, (5.3) 
i.e. a value much greater than one. Then, adjusting only p, at every iteration step, 
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using formula (4.5), we have an absolute error Au less than 1 X lo-’ everywhere on 
[0,1] for n = 7 (computation by Simpson’s rule with an integration step equal to 0.05); 
simultaneously, p6 = 1 + 7 X lop9= 1. Values of u,(x) and u 7 ( x )  = u,(x) are shown in 
table 1 and can be compared with uo(x) = 1. 

Table 1. 

X 
- 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.381 212 
0.376 124 
0.361 145 
0.337 052 
0.304 914 
0.265 888 
0.221 077 
0.171 457 
0.117 858 
0.060 964 
0.001 336 

U A X )  - U A X )  

0.410 043 
0.403 852 
0.385 685 
0.356 633 
0.318 169 
0.271 185 
0.219 108 
0.161 178 
0.099 066 
0.033 576 

-0.034 652 

Example 2. 
On the interval [-1,  +1], let us now search for the solution which meets the boundary 
conditions 

U ( - 1 )  = u ( + l )  = 0  (5.4) 

U”( x)  - 4 0 x 4  x )  = 2. ( 5 . 5 )  

G ( X, y)  = - $ { I  x - yI + xy - 1 } 

for the following second-order differential equation 

As we know that 

(5 .6)  
is the Green function (Margenau and Murphy 1949) associated to u”(x)  and to 
conditions (5.4), we can easily write a Fredholm equation which is equivalent to (5.5) 
with the constraints (5.4). We have 

U(X)=-x2+1+ K ( x ,  y)u(y)dy,  (5.7) l-: 
the introduced kernel being defined as 

K(x, Y )  =40yG(x, Y ) .  ( 5 . 8 )  

As K(x, y)  f K(y, x) does not present Hilbert-Schmidt exchange symmetry, it is no 
longer possible to compute IlKll using Kellogg’s method. However, the definition (2.6) 
of the spectral norm allows us to state ( V u  E Lz and distinct from the null function) 

With u(x) = 1 ,  we thus obtain 

(5.9) 

IlKll =d172.698/2 = 9.292. (5.10) 
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On the other hand, an upper bound of IJKII is also available, using the inequality (Bass 
1971) 

jD jD [ K ( x ,  y)I2 dx dyz-  IIKI12+llKll &284.44= 16.865. (5.11) 

We can conclude from (5.10) and (5.11) that the norm of K is rather high. Therefore, 
both parameters a ,  and P,  were adjusted at every iterative step according to (4.10), 
Simpson’s rule being used for all the necessary integrations with Sy = 0.05. A stabilisa- 
tion with Au < 2 X appears for n = 23 and we have the following results for the 
last parameters 

a 2 2  = 0.999 999 45, 

1 1  ~ 2 2  -f - K ~ 2 2  11 * = 1.77 X 

/ 322  = 0.999 999 59, 
(5.12) 

Some values of u , ( x ) ,  u l ( x )  and u,(x) are given in table 2. 

-1.0 
-0.8 
-0.6 
-0.4 
-0.2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.000 
0.360 
0.640 
0.840 
0.960 
1.000 
0.960 
0.840 
0.640 
0.360 
0.000 

0.000 000 
0.077 739 
0.111 125 
0.080 326 

-0.005 933 
-0.119 886 
-0.224 248 
-0.281 734 
-0.264 579 
-0.164 057 

0.000 000 

0.000 000 
0.051 324 
0.084 022 
0.115 142 
0.137 708 
0.122 838 
0.030 623 

-0.141 812 
-0.294 234 
-0.254 429 

0.000 000 

6. Examination of some essential features belonging to Fredholm equations of the 
first kind 

A generalisation of the preceding techniques, partly iterative, partly variational, to the 
equations of the first kind, would be very interesting. However, before seeking efficient 
methods for this new problem, some characteristic features must be outlined for such 
Fredholm equations formulated as 

and for which the operator K continues to be restricted to finite norm. We need a 
suitable algorithm which is able to give the desired inversion 

u ( x )  = (K-’f)(x), (6.2) 
but some fundamental remarks shall be written down before trying to build any 
computing scheme. 
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6.1. Our equation has no solution 

This is in particular the case for the apparently simple equation 

( K u ) ( x )  = lo1 xyu(y) dy = e x  

The displayed integral ( K u ) ( x )  is necessarily equal to a product of x by a constant; 
as f ( x )  = ex does not present such a property, our problem is insolvable. 

6.2. A n  infinite set of solutions may exist 

Let us assume that some functions u l ( x ) ,  u z ( x ) ,  . . . orthogonal to the kernel, i.e. such 
that 

can be found. Then, when we already know a single solution Vo(x)  for (6.1), any 
other function defined as 

with arbitrary coefficients c i ,  is also a valid solution for (6.1). When our integral 
transform changes u ( x )  in f ( x )  = ( K u ) ( x ) ,  these particular kernels are inducing a loss 
of information: as pointed out by (6.5), an indetermination characterised by an arbitrary 
linear combination of functions u i ( x )  will obviously remain when we try to rebuild u ( x ) .  

Equations of that kind, with infinitely many possible solutions, are very frequent: 
for a convenient choice off  (x),  this will happen when the kernel K ( x ,  y)  is degenerate 
or (for non-degenerate kernels) when the enumerable set of eigenfunctions is not 
complete. 

6.3. Study of the integral transforms which, theoretically, do not induce a loss of 
information 

Let 

be the expansion of a symmetric Hilbert-Schmidt kernel with eigenvalues F~ and with 
a complete set of orthogonal functions 4 i .  In principle, the integral transform (6.1) 
should not induce any loss of information when u ( x )  is changed into f ( x ) .  To verify 
this statement, let us start from a function U E L 2 ,  such that 

and giving 
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Conversely, a perfect knowledge of any function f(x) will lead to  the bi values; we have 
r 

Afterwards, we are theoretically able to obtain the ai coefficients. If the constraint 

is effectively satisfied, the unique solution is formally the following 

The inverse operator K-’  is thus associated with a formal kernel 

and with the previous domain of integration D. 
Now, for a non-degenerate kernel, the hypothesis 

r r  

(6.10) 

(6.11) 

(6.12) 

(6.13) 

indicates an accumulation of eigenvalues pl in the vicinity of zero. Many difficulties 
thence arise as K-’(x,  y) cannot be square integrable. The formula (6.1 1) is mathemati- 
cally exact but can only be applied when the p,’s are perfectly accurate and when 
functions f ( x )  and 4 1 ( x )  are simultaneously analytical: in numerical analysis, f ( x )  and 
K (  x ,  y)  are only known through a finite number of sampling data with a limited number 
of digits and the probiem is in fact completely different. For large indices i, when the 
eigenvalues p l  are very close to zero, many terms P I a i 4 , ( x )  of (6.8) will be too small 
(Vx E D )  to have any effect on the known digits of the available f ( x )  data; it appears 
consequently that rather wide variations of these coefficients a, may occur in u ( x )  
without leading to any visible change in its integral transform f ( x ) .  Practically, this 
is equivalent to a loss of information which is very similar to that previously checked 
when functions orthogonal to the kernel do really exist: we may state that many small 
pi's behave numerically as if they were actually equal to exact zeros. This is why many 
authors point out that Fredholm equations of the first kind belong to a class of ill  posed 
problems (Tikhonov and Arsenine 1976). 

7. Solving possibilities for equations of the first kind 

In order to solve (6.1), especially in the case of convolution problems, some authors 
start from the equivalent equation (Hill and Loup 1976) 

u ( x )  = f ( x ) + [ ( I - W u l ( x ) ,  (7.1) 

and then apply the Liouville-Neumann iterative method with operator ( I  - K )  instead 
of K previously used in formula (2.3). However, that kind of procedure will frequently 
fail, as a solution of (6.1) may only be obtained in such conditions when f ( x )  has a 
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very special analytical behaviour. For instance, when K ( x ,  y) is a symmetric Hilbert- 
Schmidt kernel, the double inequality 

1 s JII-KII s 1 + IlKll (7.2) 

is always satisfied: the lower bound is attained when the operator K is positive with 
IlKll s 2; on the contrary, the upper bound will be reached when the negative value 
-//KIJ is exactly one of the eigenvalues of K. 

Nevertheless, a convergence of the Liouville-Neumann sequence is effectively 
observed if 

f(x) = bi+i(x), 
i e l  

the subset I of indices i being such that we have strictly 

V i €  I, 0 <pi < 2. 

(7.3) 

(7.4) 

When conditions (7.4) are fulfilled, the absolute useful eigenvalues 11 - piI of ( I  - K )  
will remain strictly less than unity; the iterative process is then convergent, as 

uO(x)  = bl+i(x), 
i c l  

u , ( x ) =  1 b1+i(x)[1+(1-~i)I, 
I € I  

. . .  

b1 cc 

u d x )  = b,+,(x) c ( 1  -dk = c - +l(X). 
l e 1  k=O I S 1  PI 

These preliminary remarks, related to (7.1), point out the great interest of positive 
operators for which the norm is actually lower than 2. Consequently, it seems preferable 
to write down, instead of (6.1), 

(7.6) (fi)(x) = 2W2u)(x)/llKII2 = 2("llK112 = g(x), 

( P u ) ( x )  = 2(Ku)(x) / l /K/l= 2f(x)/l/K/I = g(x). 

or, when K is already a positive operator, 

(7.7) 

Both equations (7.6) or (7.7) now contain a positive operator P with llPll= 2, giving 
IJI - P(I = 1 ; simultaneously, the eigenvalues of ( I  - P) are widespread over the interval 
[-1, +1]. 

With P, the equation similar to (7.1), i.e. 

u ( x )  =g(x)+[(I -P)ul (x) ,  (7.8) 
will be easily worked out, using as nonlinear formula similar to (4.1) the expression 

u,+,(x) = ~ & ( ~ ) + P , c ( ~ - ~ ) ~ l t ~ > ,  (7.9) 

in which a,  and P,  are deduced from the variational condition 

6 II g - Pu,+ 1 1 1 2  = 0. (7.10) 
The supplementary constraint a, = 1 ( V n )  gives for P, (compare with (4.5)) 

P n  = ( (1 - P)g, ( I  - P ) m J /  ll(I - P)Pu, / I 2 *  (7.11) 
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When a, and p, are both adjusted at every step, formulae (4.10) are once more 
convenient, this time with the following values 

A*’ llPg112, B2, = ll(l-P)P~,Il2, 

Gfl= ( g ,  U - P ) P u , ) .  

D, = ( P g ,  ( l - P ) P u , ) ,  F = ( g ,  Pg) ,  (7.12) 

Another advantage has to be noticed when our primary equation (6.1) is changed into 
(7.6): there always exists at least one solution for equation (7.6) as g ( x )  and ( P u ) ( x )  
are both necessarily linear combinations of K-eigenfunctions. 

7.1. Example involving a positive operator with weak singularity 

We choose here a plane integration domain with two-dimensional variables x and y 
(coordinates x l r  x 2  for point M ;  y, and y2 for M ’ ) :  D will be a disc of unit radius 
with its centre in 0, to which we associate the kernel 

K ( M ,  M ’ )  = K ( M ‘ ,  M )  = l / r M M ,  ( M ,  M’E D ) ;  (7.13) 

r,wMf is the distance between the two points M and M’.  
We have now to examine the Fredholm equation of the first kind 

r r  

f ( M )  = ( K u ) ( M )  = J J K ( M ,  M ’ ) u ( M ’ )  d a ’  
D 

(7.14) 

where du ‘  denotes the elementary area around M’. From a physical point of view, it 
is very interesting to solve (7.14) as this typical equation can be set up easily when 
studying the transaxial tomography problem: the data f (  M )  are experimentally 
obtained and the unknown u ( M )  characterises the image intensity (Guy et a1 1979a). 

Here, the kernel (3.13) is no longer square integrable but it remains a kernel with 
a weak singularity, in Mikhlin’s sense (1960). Such an operator has a reasonable 
behaviour with a norm always defined by (2.6). We obtain, using Kellogg’s method, 

IlKll = 5.438. (7.15) 

In order to test our solving technique, a cylindrical symmetric function (consequently 
symbolised by f ( r ) ,  r being the polar radius of M )  has been firstly worked out from 
the equally cylindrical symmetric function 

u ( r ) = ( 1 - $ r 2 ) ” 2 ,  (7.16) 

using (7.14) as integral transform. 
As operator K is positive and ‘does not produce theoretically any loss of informa- 

tion’, it is sufficient to employ equation (7.7). Moreover, it is also possible to utilise 
Aitken’s procedure for convergence acceleration (Brezinski 1978) ; with 

(7.17) 

we have thus found that the exact starting function u,(r )  is practically recovered, the 
absolute error being less than 2 X everywhere over the whole disc D. Some results 
of the numerical computation are collected in table 3 below. 
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Table 3. 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

1 .DO00 
0.9975 
0.9899 
0.9772 
0.9592 
0.9354 
0.9055 
0.8689 
0.8246 
0.7714 
0.7071 

2.1004 
2.0930 
2.0711 
2.0344 
1.9626 
1.9152 
1.8315 
1.7301 
1.6082 
1.4590 
1.2437 

0.4847 
0.4841 
0.4825 
0.4794 
0.4745 
0.4673 
0.4568 
0.4420 
0.421 1 
0.3906 
0.3341 

0.9843 
0.9828 
0.9768 
0.9671 
0.9531 
0.9341 
0.9093 
0.8770 
0.8347 
0.7760 
0.6665 

0.9997 
0.9972 
0.9896 
0.9768 
0.9586 
0.9348 
0.9050 
0.8688 
0.8258 
0.7741 
0.7058 

From this last example, we can assert that the form (7.8) for a Fredholm equation 
of the first kind is very helpful: using judiciously the constraint (7.10), we are thus 
given an efficient iterative process leading to the desired solution with a good accuracy. 

We finally conclude that we have here detailed, in the case of Fredholm integral 
equations, some interesting optimisation iterative methods. These are very competitive 
with other ones sharing the same main ideas (i.e. adjusting introduced parameters at 
every step of iteration), as the gradient techniques which are often utilised when the 
operators are matrices (Faddeev and Faddeeva 1963, Fletcher 1980, Ciarlet 1982). 
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